This article was downloaded by: [Renmin University of China]
On: 13 October 2013, At: 10:38
Publisher: Taylor \& Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3J H, UK


J ournal of Coordination Chemistry<br>Publication details, including instructions for authors and subscription information:<br>http:// www.tandfonline.com/loi/ gcoo20

# Solvent effect on condensation of 

 pyramidal $\left[\mathrm{AsSe}_{3}\right]^{3-}$ : solvothermal syntheses of new selenidoarsenates containing transition metal(II) complexes with 1,10-phenanthrolineRuihong Chen ${ }^{\text {a }}$, Weiwei Tang ${ }^{\text {a }}$, Wenqing J iang ${ }^{\text {a }}$, Yong Zhang ${ }^{\text {a }}$ \& Dingxian Jia ${ }^{\text {a }}$<br>${ }^{\text {a }}$ College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123 , P.R. China Accepted author version posted online: 24 Jul 2012 . Published online: 10 Aug 2012.

To cite this article: Ruihong Chen, Weiwei Tang, Wenqing Jiang, Yong Zhang \& Dingxian J ia (2012) Solvent effect on condensation of pyramidal $\left[\mathrm{AsSe}_{3}\right]^{3-}$ : solvothermal syntheses of new selenidoarsenates containing transition metal(II) complexes with 1,10-phenanthroline, J ournal of Coordination Chemistry, 65:18, 3316-3328, DOI: 10.1080/ 00958972.2012.714868

To link to this article: http://dx.doi.org/ 10.1080/00958972.2012.714868

## PLEASE SCROLL DOWN FOR ARTICLE

Taylor \& Francis makes every effort to ensure the accuracy of all the information (the "Content") contained in the publications on our platform. However, Taylor \& Francis, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Taylor \& Francis. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Taylor and Francis shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any form to anyone is expressly forbidden. Terms \&

Conditions of access and use can be found at http://www.tandfonline.com/page/terms-and-conditions

# Solvent effect on condensation of pyramidal $\left[\mathrm{AsSe}_{3}\right]^{3-}$ : solvothermal syntheses of new selenidoarsenates containing transition metal(II) complexes with 1,10-phenanthroline 

RUIHONG CHEN, WEIWEI TANG, WENQING JIANG, YONG ZHANG and DINGXIAN JIA*<br>College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P.R. China

(Received 9 May 2012; in final form 26 June 2012)


#### Abstract

The reactions $\mathrm{As}_{2} \mathrm{O}_{3}$, Se and 1,10-phenanthroline (phen) with $\mathrm{NiCl}_{2}$ and $\mathrm{ZnCl}_{2}$ in water at $140^{\circ} \mathrm{C}$ for 5 days afforded selenidoarsenates $\left[\mathrm{Ni}(\text { phen })_{3}\right]_{2}\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right](\mathbf{1})$ and $\left[\mathrm{Zn}(\text { phen })_{3}\right]_{2}\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]$ (2), respectively. The reactions with $\mathrm{CoCl}_{2}$ and $\mathrm{NiCl}_{2}$ in $\mathrm{CH}_{3} \mathrm{OH}$ aqueous solution produced polyselenidoarsenates $\left[\mathrm{Co}(\text { phen })_{3}\right]\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]$ (3) and $\left[\mathrm{Ni}(\text { phen })_{3}\right]\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]$ (4). All transition metal ions are octahedrally coordinated by six nitrogen atoms and all arsenics are trigonal pyramidally coordinated by three seleniums. In $\mathbf{1}$ and 2, eight $\left[\mathrm{AsSe}_{3}\right]^{3-}$ trigonal pyramids joined via edge-sharing to form $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ with condensation grade of 0.571 . $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ contains two $\mathrm{As}_{3} \mathrm{Se}_{3}$ and one $\mathrm{As}_{6} \mathrm{Se}_{6}$ heterocycles. The formations of the selenidoarsenate anion $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ in $\mathbf{1}$ and $\mathbf{2}$ and polyselenidoarsenate $\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]^{2-}$ in $\mathbf{3}$ and $\mathbf{4}$ show solvent effect on condensation of trigonal bipyramidal $\left[\mathrm{AsSe}_{3}\right]^{3-}$ units under solvothermal conditions.


Keywords: Selenidoarsenates; Solvothermal synthesis; X-ray structure determination; Solvent effect; Condensation grade

## 1. Introduction

Chalcogenidoarsenates have received interest due to their condensation of trigonal bipyramidal $\left[\mathrm{AsE}_{3}\right]^{3-}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$ units and potential applications in optical, electrical and ion exchange materials [1-5]. Hydro- or solvothermal synthesis from $100-200^{\circ} \mathrm{C}$ and extraction technique at room temperature have proven to be useful for access to chalcogenidoarsenate [6-9]. Condensation of trigonal bipyramidal $\left[\mathrm{AsE}_{3}\right]^{3-}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$ units in the presence of organic cations or alkali (and alkaline earth) metal cations leads to a set of binary chalcogenidoarsenate $\left[\mathrm{As}_{x} \mathrm{E}_{y}\right]^{n-}$ anions, exemplified by $\left[\mathrm{As}_{2} \mathrm{E}_{4}\right]^{2-}$ $[10-12],\left[\mathrm{As}_{3} \mathrm{E}_{6}\right]^{3-}[13,14],\left[\mathrm{As}_{4} \mathrm{~S}_{7}\right]^{2-}[15],\left[\mathrm{As}_{6} \mathrm{~S}_{10}\right]^{2-}[15,16]$, and $\left[\mathrm{As}_{8} \mathrm{~S}_{13}\right]^{2-}[16-18]$. Since the first ternary cobalt chalcogenometalates $\left[\mathrm{Co}(\mathrm{en})_{3}\right] \mathrm{CoSb}_{4} \mathrm{~S}_{8}$ were prepared in ethylenediamine (en) in 1996 [19], a number of chalcogenidoarsenates combined with transition-metal (TM) complex cations have been synthesized under aminothermal

[^0]conditions in aliphatic ethylene polyamine solvents. The coordinative ethylene polyamines coordinate to $\mathrm{TM}^{n+}$ to form complex cations $\left[\mathrm{TM}(\text { polyamine })_{m}\right]^{n+}$, which combined with chalcogenidoarsenates to form TM-containing chalcogenidoarsenates, such as $\left[\mathrm{Mn}(\mathrm{en})_{3}\right]_{2}\left[\mathrm{Mn}(\mathrm{en})_{2} \mathrm{AsS}_{4}\right]\left[\mathrm{As}_{3} \mathrm{~S}_{6}\right][2],\left[\mathrm{TM}(\mathrm{en})_{3}\right]_{2} \mathrm{As}_{2} \mathrm{Se}_{5}(\mathrm{TM}=\mathrm{Mn}, \mathrm{Co})$ [20, 21], $\left[\mathrm{Fe}(\mathrm{en})_{3}\right] \mathrm{As}_{2} \mathrm{Se}_{6}$ and $\left[\mathrm{Mn}(\mathrm{en})_{3}\right] \mathrm{As}_{2} \mathrm{Se}_{6},\left[\mathrm{Mn}(\text { dien })_{2}\right]_{3}\left[\mathrm{As}_{3} \mathrm{Se}_{6}\right]_{2} \quad[22]$, $\left[\mathrm{TM}(\text { dien })_{2}\right] \mathrm{As}_{2} \mathrm{Se}_{6}$ (dien $=$ diethylenetriamine) $(\mathrm{TM}=\mathrm{Co}, \mathrm{Ni})$, and $\left[\mathrm{Mn}(\mathrm{dap})_{3}\right] \mathrm{As}_{2} \mathrm{Se}_{6}$ (dap $=1,2$-diaminopropane) [23]. Recently, selenidoarsenates $\mu-\mathrm{As}_{2} \mathrm{Se}_{4}, \mu-\mathrm{As}_{2} \mathrm{Se}_{5}, \mu-\mathrm{As}_{4} \mathrm{Se}_{7}$, and $\mu-\mathrm{As}_{4} \mathrm{Se}_{8}$ were obtained in manganese complexes with the tridentate terpy (terpy $=2,2^{\prime} ; 6^{\prime}$, $2^{\prime \prime}$-terpyridine) or tetradentate tren as the coligands [24-26]. Polyselenidoarsenates to $\mathrm{Mn}(\mathrm{II})$ are also obtained in $\left[\{\mathrm{Mn}(\text { terpy })\}_{3}\left(\mu-\mathrm{AsSe}_{2}\left(\mathrm{Se}_{2}\right)\right)_{2}\right]$ and $\left[\{\mathrm{Mn}(\text { cyclam })\}_{2}\right.$ $\left.\left(\mu-\mathrm{As}_{2} \mathrm{Se}_{6}\right)\right]($ cyclam $=1,4,8,11$-tetraazacyclotetradecane) [27].

Very recently, rigid aromatic chelating ligands $2,2^{\prime}$-bipy and phen were used instead of the traditional aliphatic chelating amines as structure directing agents, and several chalcogenidoarsenates(III) have been prepared under hydrothermal conditions. Examples included thioarsenates(III) [ $\mathrm{Mn}_{2}\left(2,2^{\prime}\right.$-bipy) $\left.\mathrm{As}_{2} \mathrm{~S}_{5}\right]$ [28], $\left[\mathrm{Fe}(\text { phen })_{3}\right]\left[\mathrm{As}_{3} \mathrm{~S}_{6}\right.$ ]. dien $\cdot 7 \mathrm{H}_{2} \mathrm{O}, \quad\left[\mathrm{Mn}_{2}(\text { phen })_{4}\left(\mathrm{As}_{2} \mathrm{~S}_{5}\right)\right] \cdot$ phen $\cdot 2 \mathrm{H}_{2} \mathrm{O} \quad[29], \quad\left[\mathrm{Mn}_{2}(\text { phen })\left(\mathrm{As}_{2} \mathrm{~S}_{5}\right)\right]_{n} \quad[30]$ and $\left[\mathrm{Mn}(\mathrm{phen})_{2}\left(\mathrm{As}_{2} \mathrm{~S}_{4}\right)\right]_{n} \quad[31]$, mixed-valent thioarsenates(III, V) $\quad\left\{\left[\mathrm{Mn}\left(2,2^{\prime} \text {-bipy }\right)_{2}\right]_{2}\right.$ $\left.\left(\mathrm{As}^{\mathrm{V}} \mathrm{S}_{4}\right)\right\}\left[\mathrm{As}^{\mathrm{III}} \mathrm{S}\left(\mathrm{S}_{5}\right)\right] \quad[31]$, and $\left\{[\mathrm{Mn}(\mathrm{phen})]_{3}\left(\mathrm{As}^{\mathrm{V}} \mathrm{S}_{4}\right)\left(\mathrm{As}^{\mathrm{III}} \mathrm{S}_{3}\right)\right\}_{n} \cdot n \mathrm{H}_{2} \mathrm{O} \quad[32]$, and selenidoarsenate(III) $\quad\left[\mathrm{Mn}(\text { phen })_{2}\right]_{n}\left[\mathrm{As}_{2} \mathrm{Se}_{3}\left(\mathrm{Se}_{2}\right)\right]_{n} \quad[33]$. In our previous work, polyselenidoarsenates(III) $\quad\left[\mathrm{TM}(\text { phen })_{3}\right]\left[\mathrm{As}_{2} \mathrm{Se}_{2}\left(\mu-\mathrm{Se}_{3}\right)\left(\mu-\mathrm{Se}_{5}\right)\right] \quad(\mathrm{TM}=\mathrm{Co}, \quad \mathrm{Ni})$, $\left[\mathrm{Fe}(\text { phen })_{3}\right]\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]$, and mixed-valent thioarsenates(III, V) $\left[\left\{\mathrm{Mn}(\mathrm{phen})_{2}\right\}_{2}\left(\mu-\eta^{2}, \eta^{2}-\right.\right.$ $\left.\left.\mathrm{As}^{\mathrm{V}} \mathrm{Se}_{4}\right)\right]_{2}\left[\mathrm{As}_{2}^{\mathrm{III}} \mathrm{Se}_{6}\right] \cdot \mathrm{H}_{2} \mathrm{O}[34,35]$ were prepared by reactions of $\mathrm{TMCl}_{2}, \mathrm{As}_{2} \mathrm{O}_{3}, \mathrm{Se}$, and phen under methanol-thermal conditions. Now, the $\mathrm{TM} / \mathrm{As} / \mathrm{Se} /$ phen system is investigated in water and $\mathrm{CH}_{3} \mathrm{OH}$ aqueous solution, and selenidoarsenates(III) $\left[\mathrm{TM}(\text { phen })_{3}\right]_{2}\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right] \quad(\mathrm{TM}=\mathrm{Ni} \quad$ (1), $\quad \mathrm{Zn} \quad$ (2)) $\quad$ and $\quad$ polyselenidoarsenates(III) $\left[\mathrm{TM}(\text { phen })_{3}\right]\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right](\mathrm{TM}=\mathrm{Co}(\mathbf{3})$, $\mathrm{Ni}(4))$ were synthesized and characterized.

## 2. Experimental

### 2.1. Materials and physical measurements

All chemicals are analytical grade and used without purification. Elemental analysis was conducted on a MOD 1106 elemental analyzer. Room temperature optical diffuse reflectance spectra of the powdered samples were obtained with a Shimadzu UV-3150 spectrometer. The absorption $(\alpha / S)$ data were calculated from reflectance using the Kubelka-Munk function $\alpha / S=(1-R)^{2} / 2 R$ [36], where $R$ is the reflectance at a given energy, $\alpha$ is the absorption, and $S$ is the scattering coefficient.

### 2.2. Synthesis of the complexes

2.2.1. Synthesis of $\left[\mathrm{Ni}(\text { phen })_{3}\right]_{2}\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]$ (1). $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(71 \mathrm{mg}, 0.3 \mathrm{mmol})$, phen $(162 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{As}_{2} \mathrm{O}_{3}(59 \mathrm{mg}, 0.3 \mathrm{mmol}), \mathrm{Se}(190 \mathrm{mg}, 2.4 \mathrm{mmol})$, and diethylenetriamine (dien) ( $186 \mathrm{mg}, 1.81 \mathrm{mmol}$ ) were dispersed in 6 mL of $\mathrm{H}_{2} \mathrm{O}$, and then the dispersion was loaded into a Teflon-lined stainless steel autoclave with an inner volume of 15 mL . The sealed autoclave was heated under autogenous pressure at
$140^{\circ} \mathrm{C}$ for 5 days. Upon cooling to ambient temperature, dark-red block crystals of $\mathbf{1}$ were obtained with ca $59 \%$ yield (based on $\mathrm{As}_{2} \mathrm{O}_{3}$ ). The compound is stable in dried air and in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and dimethyl ether. Anal. Calcd for $\mathrm{C}_{72} \mathrm{H}_{48} \mathrm{~N}_{12} \mathrm{Ni}_{2} \mathrm{As}_{8} \mathrm{Se}_{14}(\%)$ : C, 29.79; H, 1.67; N, 5.79. Found (\%): C, 29.65; H, 1.53, N, 5.66.
2.2.2. Synthesis of $\left[\mathbf{Z n}(\mathbf{p h e n})_{3}\right]_{2}\left[\mathrm{As}_{\mathbf{8}} \mathrm{Se}_{\mathbf{1 4}}\right]$ (2). Yellow block crystals of $\mathbf{2}$ were prepared with a procedure similar to that for synthesis of $\mathbf{1}$, except that $\mathrm{ZnCl}_{2}$ was used instead of $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(54 \%\right.$ yield based on $\left.\mathrm{As}_{2} \mathrm{O}_{3}\right) .2$ is stable in dried air and in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and dimethyl ether. Anal. Calcd for $\mathrm{C}_{72} \mathrm{H}_{48} \mathrm{~N}_{12} \mathrm{Zn}_{2} \mathrm{As}_{8} \mathrm{Se}_{14}$ (\%): C, 29.65; H, 1.66; N, 5.76. Found (\%): C, 29.49; H, 1.54; N, 5.61.
2.2.3. Synthesis of $\left[\mathbf{C o}(\text { phen })_{3}\right]\left[A_{2} \mathbf{S e}_{6}\right]$ (3). $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(71 \mathrm{mg}, 0.3 \mathrm{mmol})$, phen $(162 \mathrm{mg}, 0.9 \mathrm{mmol}), \mathrm{As}_{2} \mathrm{O}_{3}(59 \mathrm{mg}, 0.3 \mathrm{mmol})$, $\mathrm{Se}(190 \mathrm{mg}, 2.4 \mathrm{mmol})$, and dien ( 198 mg , 1.9 mmol ) were dispersed in 6 mL of $45 \% \mathrm{CH}_{3} \mathrm{OH}$ aqueous solution, and then the dispersion was loaded into a Teflon-lined stainless steel autoclave with an inner volume of 15 mL . The sealed autoclave was heated under autogenous pressure at $140^{\circ} \mathrm{C}$ for 5 days. Upon cooling to ambient temperature, black block crystals of $\mathbf{3}$ were obtained with ca $51 \%$ yield (based on $\mathrm{As}_{2} \mathrm{O}_{3}$ ). 3 is stable in dried air and in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and dimethyl ether. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{CoAs}_{2} \mathrm{Se}_{6}$ (\%): C, 35.36; H, 1.98; N, 6.87. Found (\%): C, 35.22; H, 1.82, N, 6.73.
2.2.4. Synthesis of $\left.\mathbf{N i}(\text { phen })_{3}\right]\left[\mathrm{As}_{2} \mathbf{S e}_{6}\right]$ (4). Black block crystals of $\mathbf{4}$ were prepared with a procedure similar to that for synthesis of $\mathbf{3}$, except that $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ was used instead of $\mathrm{CoCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}\left(48 \%\right.$ yield based on $\left.\mathrm{As}_{2} \mathrm{O}_{3}\right)$. Compound $\mathbf{4}$ is stable in dried air and in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ and dimethyl ether. Anal. Calcd for $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{NiAs}_{2} \mathrm{Se}_{6}$ (\%): C, 35.36; H, 1.98; N, 6.87. Found (\%): C, 35.25; H, 1.88, N, 6.68.

## 2.3. $X$-ray structure determination

Intensity data were collected on a Rigaku Saturn CCD diffractometer for $\mathbf{1}$ and $\mathbf{4}$ and a Rigaku Mercury CCD diffractometer for 2 and $\mathbf{3}$ using graphite-monochromated Mo-K $\alpha$ radiation $(\lambda=0.71073 \AA$ ) with a $\omega$-scan method to a maximum $2 \theta$ value of $50.00^{\circ}$ for $\mathbf{1}$ and $50.70^{\circ}$ for $\mathbf{2 , 3}$, and $\mathbf{4}$. An absorption correction was applied for all the compounds using multi-scan methods. The structures were solved with direct methods using SHELXS-97 [37] and refinement was performed against $F^{2}$ using SHELXL-97 [38]. All non-hydrogen atoms were refined anisotropically. Hydrogen atoms were positioned with idealized geometry and refined with fixed isotropic displacement parameters using a riding model. Technical details of data collections and refinement are summarized in table 1 .

## 3. Results and discussion

### 3.1. Synthesis of the compounds

Products of solvothermal reactions of $\mathrm{As}_{2} \mathrm{O}_{3}, \mathrm{Se}$, dien, and phen in the presence of $\mathrm{TMCl}_{2}$ are influenced by the reaction solvents. Solvothermal reactions with $\mathrm{NiCl}_{2}$ and
Table 1. Crystallographic data and structure refinement details for 1-4.

|  | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Empirical formula | $\mathrm{C}_{72} \mathrm{H}_{48} \mathrm{~N}_{12} \mathrm{Ni}_{2} \mathrm{As}_{8} \mathrm{Se}_{14}$ | $\mathrm{C}_{72} \mathrm{H}_{48} \mathrm{~N}_{12} \mathrm{Zn}_{2} \mathrm{As}_{8} \mathrm{Se}_{14}$ | $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{CoAs}_{2} \mathrm{Se}_{6}$ | $\mathrm{C}_{36} \mathrm{H}_{24} \mathrm{~N}_{6} \mathrm{NiAs}_{2} \mathrm{Se}_{6}$ |
| Formula weight | 2903.44 | 2916.76 | 1223.14 | 1222.92 |
| Wavelength (A) | 0.71073 | 0.71073 | 0.71073 | 0.71073 |
| Crystal system | Triclinic | Triclinic | Triclinic | Triclinic |
| Space group | $P-1$ (2) | $P-1$ (2) | $P-1$ (2) | $P-1$ (2) |
| Unit cell dimensions ( $\mathrm{A},{ }^{\circ}$ ) |  |  |  |  |
| $a \longrightarrow$ | 10.3554(8) | 10.3682(14) | 13.1405(3) | 13.0546(3) |
| $b$ | 12.7339(8) | 12.7834(11) | 13.3007(3) | 13.1712(5) |
| c | 17.4755(17) | 17.524(3) | 14.0142(2) | 13.6412(4) |
| $\alpha$ | 76.601(6) | 76.444(12) | 60.24(2) | 117.048(9) |
| $\beta$ | 88.083(7) | 87.986(15) | 65.42(2) | 99.380(10) |
| $\gamma$, | 66.684(5) | 66.711(10) | 74.20 (2) | 105.67(3) |
| Volume ( $\AA^{3}$ ), $Z$ | 2054.2(3), 1 | 2069.6(5), 1 | 1926.9(5), 2 | 1896.6(7), 2 |
| Calculated density ( $\mathrm{g} \mathrm{cm}^{-3}$ ) | 2.347 | 2.340 | 2.108 | 2.142 |
| Absorption coefficient ( $\mathrm{mm}^{-1}$ ) | 9.908 | 9.959 | 7.911 | 8.038 |
| $F(000)$ | 1360 | 1364 | 1160 | 1160 |
| Reflections collected | 17,033 | 20,219 | 18,223 | 15,404 |
| Independent reflections | $7178[R(\mathrm{int})=0.0642]$ | $7526[R(\mathrm{int})=0.0847]$ | $7001[R(\mathrm{int})=0.0696]$ | $6889[R(\mathrm{int})=0.0474]$ |
| Goodness-of-fit on $F^{2}$ | 0.913 | 1.094 | 0.987 | 1.095 |
| Final $R$ indices [ $I>2 \sigma(I)$ ] | 4798 | 5561 | 4974 | 5440 |
| Parameters | 164 | 245 | 249 | 242 |
| $R_{1}[I>2 \sigma(I)]$ | 0.0399 | 0.0519 | 0.0528 | 0.0436 |
| $w R_{2}$ (all data) | 0.0909 | 0.1356 | 0.1247 | 0.1138 |
| Largest difference peak and hole (e $\AA^{-3}$ ) | 1.741 and -1.045 | 1.473 and -1.869 | 2.021 and -1.218 | 2.382 and -1.717 |

Table 2. Selected bond lengths $(\AA)$ and angles $\left({ }^{\circ}\right)$ for $\mathbf{1}$ and 2.

|  | 1 | 2 |  | 1 | 2 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| As(1)-Se(1) | 2.4827(12) | 2.4274(16) | $\mathrm{As}(1)-\mathrm{Se}(2)$ | 2.4274(10) | 2.2924(18) |
| $\mathrm{As}(1)-\mathrm{Se}(3)$ | $2.2950(13)$ | $2.4821(17)$ | $\mathrm{As}(2)-\mathrm{Se}(2)$ | $2.3938(11)$ | $2.3875(15)$ |
| $\mathrm{As}(2)-\mathrm{Se}(4)$ | $2.5059(10)$ | $2.5105(15)$ | $\mathrm{As}(2)-\mathrm{Se}(6)$ | 2.4081(12) | 2.4110 (17) |
| As(3)-Se(1)\#1 | $2.3696(10)$ | 2.3867(16) | $\mathrm{As}(3)-\mathrm{Se}(4)$ | 2.3893(11) | 2.4320 (18) |
| $\mathrm{As}(3)-\mathrm{Se}(5)$ | $2.4363(12)$ | $2.3718(15)$ | $\mathrm{As}(4)-\mathrm{Se}(5)$ | $2.4325(12)$ | 2.4225 (18) |
| $\mathrm{As}(4)-\mathrm{Se}(6)$ | $2.4236(11)$ | $2.4313(17)$ | $\mathrm{As}(4)-\mathrm{Se}(7)$ | $2.3004(13)$ | $2.2958(18)$ |
| TM(1)-N(1) | $2.095(6)$ | 2.078 (8) | TM(1)-N(2) | 2.099 (5) | 2.094 (8) |
| $\mathrm{TM}(1)-\mathrm{N}(3)$ | 2.093(6) | 2.096 (8) | TM(1)-N(4) | 2.085(6) | $2.096(9)$ |
| $\mathrm{TM}(1)-\mathrm{N}(5)$ | 2.090(5) | 2.079(8) | TM(1)-N(6) | 2.084(6) | 2.075(8) |
| $\mathrm{Se}(1)-\mathrm{As}(1)-\mathrm{Se}(2)$ | 98.70(4) | 98.74(6) | $\mathrm{Se}(1)-\mathrm{As}(1)-\mathrm{Se}(3)$ | 107.92(4) | 98.90(6) |
| $\mathrm{Se}(2)-\mathrm{As}(1)-\mathrm{Se}(3)$ | 98.50(4) | 107.75(6) | $\mathrm{Se}(2)-\mathrm{As}(2)-\mathrm{Se}(4)$ | 86.51(4) | 86.64(5) |
| $\mathrm{Se}(2)-\mathrm{As}(2)-\mathrm{Se}(6)$ | 105.25(4) | 105.20(6) | $\mathrm{Se}(4)-\mathrm{As}(2)-\mathrm{Se}(6)$ | 98.63(4) | 98.65(6) |
| $\mathrm{Se}(1) \# 1-\mathrm{As}(3)-\mathrm{Se}(4)$ | 102.51(4) | 101.63(6) | $\mathrm{Se}(1) \# 1-\mathrm{As}(3)-\mathrm{Se}(5)$ | 95.13(4) | 102.36(6) |
| $\mathrm{Se}(4)-\mathrm{As}(3)-\mathrm{Se}(5)$ | 101.63(4) | 95.19(6) | $\mathrm{Se}(5)-\mathrm{As}(4)-\mathrm{Se}(6)$ | 101.91(4) | 101.91(6) |
| $\mathrm{Se}(5)-\mathrm{As}(4)-\mathrm{Se}(7)$ | 98.18(5) | 99.65(7) | $\mathrm{Se}(6)-\mathrm{As}(4)-\mathrm{Se}(7)$ | 99.68 (5) | 98.44(7) |
| $\mathrm{As}(1)-\mathrm{Se}(1)-\mathrm{As}(3) \# 1$ | 102.54(4) | 93.28(5) | $\mathrm{As}(1)-\mathrm{Se}(2)-\mathrm{As}(2)$ | 93.31(4) | 102.63(6) |
| $\mathrm{As}(2)-\mathrm{Se}(4)-\mathrm{As}(3)$ | 87.03(4) | 87.05(5) | $\mathrm{As}(3)-\mathrm{Se}(5)-\mathrm{As}(4)$ | 98.27(4) | 104.26(6) |
| $\mathrm{As}(2)-\mathrm{Se}(6)-\mathrm{As}(4)$ | 104.25(4) | 98.47(6) |  |  |  |
| $\mathrm{N}(1)-\mathrm{TM}(1)-\mathrm{N}(2)$ | 79.5(2) | 79.6(3) | $\mathrm{N}(1)-\mathrm{TM}(1)-\mathrm{N}(3)$ | 93.2(2) | 93.3(3) |
| $\mathrm{N}(1)-\mathrm{TM}(1)-\mathrm{N}(4)$ | 169.9(2) | 169.7(3) | $\mathrm{N}(1)-\mathrm{TM}(1)-\mathrm{N}(5)$ | 92.3(2) | 94.8(3) |
| $\mathrm{N}(1)-\mathrm{TM}(1)-\mathrm{N}(6)$ | 93.5(2) | 95.3(3) | $\mathrm{N}(2)-\mathrm{TM}(1)-\mathrm{N}(3)$ | 93.0(2) | 93.1(3) |
| $\mathrm{N}(2)-\mathrm{TM}(1)-\mathrm{N}(4)$ | 93.5(2) | 93.3(3) | $\mathrm{N}(2)-\mathrm{TM}(1)-\mathrm{N}(5)$ | 169.5(2) | 170.8(3) |
| $\mathrm{N}(2)-\mathrm{TM}(1)-\mathrm{N}(6)$ | 94.1(2) | 94.6(3) | $\mathrm{N}(3)-\mathrm{TM}(1)-\mathrm{N}(4)$ | 79.8(2) | 79.5(3) |
| $\mathrm{N}(3)-\mathrm{TM}(1)-\mathrm{N}(5)$ | 93.9(2) | 94.4(3) | $\mathrm{N}(3)-\mathrm{TM}(1)-\mathrm{N}(6)$ | 171.0(2) | 169.4(3) |
| $\mathrm{N}(4)-\mathrm{TM}(1)-\mathrm{N}(5)$ | 95.4(2) | 93.2(3) | $\mathrm{N}(4)-\mathrm{TM}(1)-\mathrm{N}(6)$ | 94.2(2) | 92.8(3) |
| $\mathrm{N}(5)-\mathrm{TM}(1)-\mathrm{N}(6)$ | 79.9(2) | 78.6(3) |  |  |  |

Symmetry transformations used to generate equivalent atoms: For $\mathbf{1}:(\# 1)-x+1,-y+1,-z+1$. For $\mathbf{2}:(\# 1)-x+1$, $-y+1,-z$.
$\mathrm{ZnCl}_{2}$ in water produced selenidoarsenates $\left[\mathrm{Ni}(\mathrm{phen})_{3}\right]_{2}\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]$ (1) and $\left.[\mathrm{Zn} \text { (phen) })_{3}\right]_{2}\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]$ (2). Reactions with $\mathrm{CoCl}_{2}$ and $\mathrm{NiCl}_{2}$ in $45 \% \mathrm{CH}_{3} \mathrm{OH}$ aqueous solution afforded polyselenidoarsenates $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]_{2}\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right] \quad$ (3) and $\left[\mathrm{Ni}(\text { phen })_{3}\right]_{2}\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]$ (4). In our previous work, reactions with $\mathrm{CoCl}_{2}$ and $\mathrm{NiCl}_{2}$ in $\mathrm{CH}_{3} \mathrm{OH}$ solvent gave $\left[\mathrm{Co}(\text { phen })_{3}\right]\left[\mathrm{As}_{2} \mathrm{Se}_{2}\left(\mu-\mathrm{Se}_{3}\right)\left(\mu-\mathrm{Se}_{5}\right)\right]$ and $\left[\mathrm{Ni}(\text { phen })_{3}\right]\left[\mathrm{As}_{2} \mathrm{Se}_{2}\right.$ $\left.\left(\mu-\mathrm{Se}_{3}\right)\left(\mu-\mathrm{Se}_{5}\right)\right]$, which contain helical $\left[\mathrm{As}_{2} \mathrm{Se}_{2}\left(\mu-\mathrm{Se}_{3}\right)\left(\mu-\mathrm{Se}_{5}\right)^{2-}\right]_{n}$ chain [34, 35]. During solvothermal reactions, TM ions are coordinated by three phen, forming $\left[\mathrm{TM}(\mathrm{phen})_{3}\right]^{2+}$ cationic counter ions to the selenidoarsenate and polyselenidoarsenate anions, but reaction solvents exert influence on the selenidoarsenate anions.

### 3.2. Crystal structures

Compounds $\mathbf{1}$ and 2 are isostructural with a cobalt analog [ $\left.\mathrm{Co}(\mathrm{phen})_{3}\right]_{2}\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]$ [34]. The $\mathrm{Ni}^{2+}$ and $\mathrm{Zn}^{2+}$ ions are coordinated with three phen ligands, forming octahedral complex cations $\left[\mathrm{TM}(\text { phen })_{3}\right]^{2+}(\mathrm{TM}=\mathrm{Ni}, \mathrm{Zn})$ with trans $\mathrm{N}-\mathrm{TM}-\mathrm{N}$ angles in the range of $169.5(2)-171.0(2)^{\circ}$ for $\left[\mathrm{Ni}(\text { phen })_{3}\right]^{2+}$ and $169.4(3)-170.8(3)^{\circ}$ for $\left[\mathrm{Zn}(\text { phen })_{3}\right]^{2+}$ (table 2). The $\mathrm{Ni}-\mathrm{N}$ and $\mathrm{Zn}-\mathrm{N}$ bond lengths are 2.084(6)-2.099(5) $\AA$ and 2.075(8)$2.096(9)$ A, respectively, which match well with those reported [39, 40]. The discrete $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ anion in $\mathbf{1}$ and $\mathbf{2}$ contains four crystallographically distinct $\mathrm{As}(\mathrm{III})$ centers, each coordinated by three $\mathrm{Se}^{2-}$ anions at $2.2924(18)-2.5105(15) \AA$ in a pyramidal
geometry with $\mathrm{Se}-\mathrm{As}-\mathrm{Se}$ angles of $86.51(4)-107.92(4)^{\circ}$ (table 2). Three $\mathrm{AsSe}_{3}(\mathrm{As}(2)$, $\mathrm{As}(3)$, and $\mathrm{As}(4))$ trigonal pyramids are vertex-linked to form a cyclic $\mathrm{As}_{3} \mathrm{Se}_{5}$ unit (figure 1). The $\mathrm{As}_{3} \mathrm{Se}_{5}$ unit is corner-linked to $\mathrm{As}(1) \mathrm{Se}_{3}$ trigonal pyramid forming the asymmetric structural unit $\mathrm{As}_{4} \mathrm{Se}_{7}$. Two $\mathrm{As}_{4} \mathrm{Se}_{7}$ units are further coupled by sharing $\mathrm{Se}(1)$ and Se (1a) yielding the isolated $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ (figure 1). The binding mode leads to formation of two $\mathrm{As}_{3} \mathrm{Se}_{3}$ and one $\mathrm{As}_{6} \mathrm{Se}_{6}$ heterocycles within the $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ anion. With the exception of $\operatorname{Se}(3)$ and $\operatorname{Se}(7)$ which are terminal ligands, all Se join two As in the $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ anion as $\mu$-Se ligands. The terminal As-Se bond lengths [2.2950(13) and $2.3004(13) \AA$ in $1,2.2924(18)$ and $2.2958(18) \AA$ in 2$]$ are shorter than those of bridging As-Se $\mathrm{b}_{\mathrm{b}}$ bonds $[2.3696(10)-2.5059(10) \AA$ in 1, 2.3718(15)-2.5105(15) $\AA$ in 2] (table 2). Secondary $\mathrm{As} \cdots \mathrm{Se}$ interactions are observed in $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$. As shown in figure 1, $\mathrm{As}(2)$ and $\mathrm{As}(3)$ in $\mathrm{As}_{3} \mathrm{Se}_{5}$ interact with $\mathrm{Se}(4)$ and $\mathrm{Se}(2)$ in the other $\mathrm{As}_{3} \mathrm{Se}_{5}$ unit with As $\cdots$ Se secondary bond lengths of 3.404 and $3.517 \AA$ in $\mathbf{1}$ and 3.416 and $3.524 \AA$ in $\mathbf{2}$, shorter than the sum of the van der Waals radii of $4.0 \AA$ for As and Se [25, 41]. Taking into account the secondary interaction, $\operatorname{As}(2)$ and $\operatorname{As}(3)$ form $\psi$ - $\mathrm{AsSe}_{4}$ trigonal bipyramids (figure 1).

In $\mathbf{1}$ and $\mathbf{2}$, two $\left[\mathrm{TM}(\text { phen })_{3}\right]^{2+}$ are coupled by face-to-face $\pi \cdots \pi$ stacking interactions between two parallel aromatic planes (containing N3 and N4 in 1; N1 and N2 in 2) of phen (figure 2a). The interplane distance between the centroids of the two phen ligands is $3.297 \AA$ in $\mathbf{1}$ and $3.303 \AA$ in $\mathbf{2}$, in the range of those for phen complexes reported $[42,43]$. The coupled $\left[\mathrm{Ni}(\text { phen })_{3}\right]^{2+}$ are arranged into a parallel array along the $a$-axis (figure 2a). Each $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ contacts two neighboring $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ via $\mathrm{As}(1) \cdots \mathrm{Se}(2 \mathrm{a})$ interactions with As $\cdots$ Se separation of $3.957 \AA$ in 1 and $3.978 \AA$ in 2 (figure 2 b ), indicating weaker secondary $\mathrm{As} \cdots \mathrm{Se}$ interactions than those within $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$. The secondary As $\cdots$ Se interactions connect $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ anions into a chain along the $a$-axis (figure 2 b ). This anionic chain locates between two arrays of $\left[\mathrm{TM}(\text { phen })_{3}\right]^{2+}$ cations (figure 3).

Compounds $\mathbf{3}$ and $\mathbf{4}$ crystallize in the triclinic crystal system and contain two formula units in the unit cell (table 1). They consist of $\left[\mathrm{TM}(\text { phen })_{3}\right]^{2+}(\mathrm{TM}=\mathrm{Co}, \mathrm{Ni})$ and


Figure 1. Crystal structure of $\mathbf{1}$ with the labeling scheme (thermal ellipsoids are drawn at $50 \%$ probability). Hydrogen atoms are omitted for clarity.
$\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]^{2-}$ ions. Like $\mathrm{TM}^{2+}$ in $\mathbf{1}$ and $\mathbf{2}$, the $\mathrm{Co}^{2+}$ and $\mathrm{Ni}^{2+}$ ions are also coordinated by three phen in a slightly distorted octahedral geometry with axial $\mathrm{N}-\mathrm{TM}-\mathrm{N}$ angles in the range of $168.6(8)-172.7(7)^{\circ}$ in 3 and 173.6(4)-176.6(4) ${ }^{\circ}$ in 4 (table 3). There are two crystallographically distinct As in $\mathbf{3}$ and $\mathbf{4}$, and both $\mathrm{As}(1)$ and $\mathrm{As}(2)$ are coordinated by three Se , yielding $\mathrm{AsSe}_{3}$ trigonal pyramids. Two $\mathrm{As}(1) \mathrm{Se}_{3}$ trigonal pyramids are joined by two $\mathrm{Se}-\mathrm{Se}$ bonds to form a dimeric anion $\left[\mathrm{As}(1)_{2} \mathrm{Se}_{6}\right]^{2-}$ (figure 4); As is coordinated by one $\mathrm{Se}^{2-}$ and two $\mathrm{Se}_{2}^{2^{-}}$ions, forming the polyselenidoarsenate anion $\left[\mathrm{As}_{2} \mathrm{Se}_{2}\left(\mathrm{Se}_{2}\right)_{2}\right]^{2-}$, which contains a six-membered $\mathrm{As}_{2} \mathrm{Se}_{4}$ ring in the chair conformation with a centrosymmetric structure. The $\left[\mathrm{As}(2)_{2} \mathrm{Se}_{6}\right]^{2-}$ anion is similarly formed from two $\mathrm{As}(2) \mathrm{Se}_{3}$ trigonal pyramids (figure 4). $\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]^{2-}$ contains a six-membered $\mathrm{As}_{2} \mathrm{Se}_{4}$ ring in the chair conformation with a centrosymmetric structure and has two sets of $\mathrm{As}-\mathrm{Se}$ bond lengths. Terminal As-Se $\mathrm{e}_{\mathrm{t}}$ bonds are shorter than bridging As-Se $\mathrm{b}_{\mathrm{b}}$ bonds (table 3). As-Se and $\mathrm{Se}-\mathrm{Se}$ bond lengths of $\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]^{2-}$ are similar to corresponding values observed in other compounds containing dimeric $\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]^{2-}$ [44-48]. In 3, each $\left[C o(\text { phen })_{3}\right]^{2+}$ contacts with two neighboring cations via face-to-face $\pi \cdots \pi$ stacking interactions with $\pi \cdots \pi$ separations 3.204 and $3.329 \AA$. The $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]^{2+}$ are assembled in chains along the $b$-axis by $\pi \cdots \pi$ stacking interactions (figure 5). $\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]^{2-}$ locate between the chains (figure 6).

The trigonal pyramids $\left[\mathrm{AsE}_{3}\right]^{3-}(\mathrm{E}=\mathrm{S}, \mathrm{Se})$ are readily condensed to form oligomeric or polymeric chalcogenidoarsenate(III) anions $\left[\mathrm{As}_{x} \mathrm{E}_{y}\right]^{n-}$. Their grades $c(c=x / y)$ lie in the range of $0.333<c<0.667$ depending upon the size and shape of their counter ions [8]. In the case of selenidoarsenate, discrete $\left[\mathrm{As}_{x} \mathrm{Se}_{y}\right]^{n-}$ aggregates with $c$ values of 0.500


Figure 2. (a) A view of $\left[\mathrm{Ni}(\mathrm{phen})_{3}\right]^{2+}$ cations showing $\pi \cdots \pi$ stacking interactions in 1. Hydrogen atoms are omitted for clarity. (b) A view of anionic chain assembled by $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ via secondary As.. Se interactions in $\mathbf{1}$.


Figure 3. Crystal packing of $\mathbf{1}$. Hydrogen atoms are omitted for clarity.

Table 3. Selected bond lengths ( $\AA$ ) and angles ( ${ }^{\circ}$ ) for $\mathbf{3}$ and 4.

|  | 3 | 4 |  | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{As}(1)-\mathrm{Se}(1)$ | 2.413(4) | 2.506 (3) | As(1)-Se(2)\#1 | 2.441 (5) | $2.386(4)$ |
| $\mathrm{As}(1)-\mathrm{Se}(3)$ | $2.262(4)$ | 2.289(2) | $\mathrm{As}(2)-\mathrm{Se}(4)$ | 2.387(8) | 2.4174 (19) |
| $\mathrm{As}(2)-\mathrm{Se}(5) \# 2$ | $2.532(8)$ | $2.4122(17)$ | $\mathrm{As}(2)-\mathrm{Se}(6)$ | $2.273(7)$ | 2.2761 (18) |
| $\mathrm{Se}(1)-\mathrm{Se}(2)$ | $2.352(4)$ | $2.339(2)$ | $\mathrm{Se}(4)-\mathrm{Se}(5)$ | 2.336 (7) | 2.3569 (18) |
| $\mathrm{TM}(1)-\mathrm{N}(1)$ | 2.08 (2) | $2.036(8)$ | $\mathrm{TM}(1)-\mathrm{N}(2)$ | 2.110(18) | 2.027(9) |
| $\mathrm{TM}(1)-\mathrm{N}(3)$ | 2.099(16) | $2.038(8)$ | TM(1)-N(4) | 2.10 (2) | 2.016 (8) |
| $\mathrm{TM}(1)-\mathrm{N}(5)$ | 2.093(17) | 2.011(8) | TM(1)-N(6) | 2.04(2) | 2.013(9) |
| $\mathrm{Se}(1)-\mathrm{As}(1)-\mathrm{Se}(2) \# 1$ | 99.77(16) | 97.20 (12) | $\mathrm{Se}(1)-\mathrm{As}(1)-\mathrm{Se}(3)$ | 96.81(17) | 99.84(9) |
| $\mathrm{Se}(2) \# 1-\mathrm{As}(1)-\mathrm{Se}(3)$ | 94.61(16) | 95.30(10) | $\mathrm{Se}(4)-\mathrm{As}(2)-\mathrm{Se}(5) \# 1$ | 96.9(3) | 99.67(7) |
| $\mathrm{Se}(4)-\mathrm{As}(2)-\mathrm{Se}(6)$ | 95.3(3) | 93.62(7) | $\mathrm{Se}(5) \# 2-\mathrm{As}(2)-\mathrm{Se}(6)$ | 99.5(2) | 97.31(6) |
| $\mathrm{As}(1)-\mathrm{Se}(1)-\mathrm{Se}(2)$ | 101.34(17) | 101.83(10) | $\mathrm{As}(1) \# 1-\mathrm{Se}(2)-\mathrm{Se}(1)$ | 101.41(15) | 100.29(11) |
| $\mathrm{As}(2)-\mathrm{Se}(4)-\mathrm{Se}(5)$ | 100.8(3) | 101.96(7) | $\mathrm{As}(2) \# 2-\mathrm{Se}(5)-\mathrm{Se}(4)$ | 101.6(2) | 100.72(6) |
| $\mathrm{N}(1)-\mathrm{TM}(1)-\mathrm{N}(2)$ | 78.6(7) | 83.0(4) | $\mathrm{N}(1)-\mathrm{TM}(1)-\mathrm{N}(3)$ | 92.5(8) | 176.6(4) |
| $\mathrm{N}(1)-\mathrm{TM}(1)-\mathrm{N}(4)$ | 95.2(7) | 94.9(4) | $\mathrm{N}(1)-\mathrm{TM}(1)-\mathrm{N}(5)$ | 93.8(8) | 89.7(3) |
| $\mathrm{N}(1)-\mathrm{TM}(1)-\mathrm{N}(6)$ | 168.6(8) | 92.2(4) | $\mathrm{N}(2)-\mathrm{TM}(1)-\mathrm{N}(3)$ | 94.9(8) | 94.4(4) |
| $\mathrm{N}(2)-\mathrm{TM}(1)-\mathrm{N}(4)$ | 169.7(8) | 91.0(4) | $\mathrm{N}(2)-\mathrm{TM}(1)-\mathrm{N}(5)$ | 89.8(8) | 93.9(4) |
| $\mathrm{N}(2)-\mathrm{TM}(1)-\mathrm{N}(6)$ | 94.1(8) | 174.2(3) | $\mathrm{N}(3)-\mathrm{TM}(1)-\mathrm{N}(4)$ | 77.0(7) | 82.9(4) |
| $\mathrm{N}(3)-\mathrm{TM}(1)-\mathrm{N}(5)$ | 172.7(7) | 92.6(4) | $\mathrm{N}(3)-\mathrm{TM}(1)-\mathrm{N}(6)$ | 96.8(8) | 90.5(4) |
| $\mathrm{N}(4)-\mathrm{TM}(1)-\mathrm{N}(5)$ | 98.9(7) | 173.6(4) | $\mathrm{N}(4)-\mathrm{TM}(1)-\mathrm{N}(6)$ | 93.2(8) | 92.7(4) |
| $\mathrm{N}(5)-\mathrm{TM}(1)-\mathrm{N}(6)$ | 77.3(8) | 82.8(4) |  |  |  |

[^1]$\left(\left[\mathrm{As}_{2} \mathrm{Se}_{4}\right]^{2-},\left[\mathrm{As}_{3} \mathrm{Se}_{6}\right]^{3-}\right.$ and $\left.\left[\mathrm{As}_{4} \mathrm{Se}_{8}\right]^{4-}\right)[10-12,14,22,49]$ have been obtained with alkali and alkaline earth metal cations, ammonium or phosphonium cations as the counter ions. The $\left[\mathrm{As}_{2} \mathrm{Se}_{5}\right]^{4-}$ anion with $c$ of 0.400 was isolated in en with $\left[\mathrm{Mn}(\mathrm{en})_{3}\right]^{2+}$ [21]. However, discrete selenidoarsenates with condensation grade more than 0.500 is scarce. Now, a new selenidoarsenate $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ with condensation grade of 0.571 was prepared with $\left[\mathrm{Ni}(\mathrm{phen})_{3}\right]^{2+}$ and $\left[\mathrm{Zn}(\text { phen })_{3}\right]^{2+}$. The only example of $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ before is $\left[\mathrm{Co}(\text { phen })_{3}\right]_{2}\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right][34]$; the first coordinative polymeric selenidoarsenate(III) with condensation grade of 0.571 is observed in $\left[\{\mathrm{Mn}(\operatorname{tren})\}\left(\mathrm{As}_{4} \mathrm{Se}_{7}\right)\right][24]$. $\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]^{2-}$, which is formed by two $\mathrm{AsSe}_{3}$ trigonal pyramids via two $\mathrm{Se}-\mathrm{Se}$ bonds, is the most common polyselenidoarsenate. Beside $\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]^{2-}$ compounds with organic counter cations [44-48], the $\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]^{2-}$ anions were also obtained with TM complex cations, exemplified by $\left[\mathrm{Fe}(\mathrm{en})_{3}\right]\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right], \quad\left[\mathrm{Mn}(\mathrm{en})_{3}\right]\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right] \quad[22], \quad\left[\mathrm{Co}(\mathrm{dien})_{2}\right] \mathrm{As}_{2} \mathrm{Se}_{6}$,


Figure 4. Crystal structure of $\mathbf{3}$ with the labeling scheme (thermal ellipsoids are drawn at $50 \%$ probability). Hydrogen atoms are omitted for clarity.


Figure 5. (a) A view of the array of $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]^{2+}$ cations assembled by $\pi \cdots \pi$ stacking interactions in 3 . Hydrogen atoms are omitted for clarity.


Figure 6. Crystal packing of 3. Hydrogen atoms are omitted for clarity.
$\left[\mathrm{Ni}(\text { dien })_{2}\right] \mathrm{As}_{2} \mathrm{Se}_{6}$, and $\left[\mathrm{Mn}(\text { dap })_{3}\right] \mathrm{As}_{2} \mathrm{Se}_{6}[23]$. Now it is isolated from $\mathrm{CH}_{3} \mathrm{OH}$ aqueous solution with $\left[\mathrm{Co}(\text { phen })_{3}\right]^{2+}$ and $\left[\mathrm{Ni}(\text { phen })_{3}\right]^{2+}$ counter cations in $\mathbf{3}$ and 4.

### 3.3. Optical properties

The UV-Vis reflectance spectroscopies of $\mathbf{1}$ and $\mathbf{2}$ were measured on powder samples at room temperature. Absorption data from reflectance spectroscopy by the KubelkaMunk function demonstrate that $\mathbf{1}$ and $\mathbf{2}$ exhibit steep absorption edge with corresponding bandgap at 1.71 and 2.33 eV , respectively (figure 7), indicating that 1 and 2 have semiconducting properties, and band gaps are in accord with the compounds color.

## 4. Conclusion

Solvothermal reactions of $\mathrm{As}_{2} \mathrm{O}_{3}$, Se , dien and phen in the presence of $\mathrm{TMCl}_{2}$ are investigated in different solvents. The solvothermal reactions in water produced selenidoarsenates $\left[\mathrm{Ni}(\text { phen })_{3}\right]_{2}\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]$ (1) and $\left[\mathrm{Zn}(\text { phen })_{3}\right]_{2}\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]$ (2), respectively, which contain $\left[\mathrm{As}_{8} \mathrm{Se}_{14}\right]^{4-}$ with condensation grade more than 0.50 . Reactions in $\mathrm{CH}_{3} \mathrm{OH}$ aqueous solution afforded polyselenidoarsenates $\left[\mathrm{Co}(\mathrm{phen})_{3}\right]_{2}\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]$ (3) and $\left[\mathrm{Ni}(\text { phen })_{3}\right]_{2}\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]$ (4) containing $\left[\mathrm{As}_{2} \mathrm{Se}_{6}\right]^{2-}$ with condensation grade of 0.333 . The syntheses of 1-4 show the solvent effect on the $\mathrm{TM}^{2+} / \mathrm{As}_{2} \mathrm{O}_{3} / \mathrm{Se} /$ phen solvothermal system.


Figure 7. Optical absorption spectra of $\mathbf{1}$ (top) and $\mathbf{2}$ (bottom).

## Supplementary material

Crystallographic data for the structures reported in the paper have been deposited at the Cambridge Crystallographic Data Centre as supplementary data, CCDC Nos. 880841 (1), 880842 (2), 880843 (3), and 880844 (4). Copies of the data can be obtained free of charge via www.ccdc.cam.ac.uk/conts/retrieving.html or from the Cambridge

Crystallographic Data Centre, 12 Union Road, Cambridge CB2 1EZ, UK; Fax: (+44) 1223-336-033 or E-mail: deposit@ccdc.cam.ac.uk

## Acknowledgments

This work was supported by the National Natural Science Foundation of P.R. China (Nos 20771077 and 21171 123), the Key Laboratory of Organic Synthesis of Jiangsu Province, Suzhou University, and the Priority Academic Program Development of Jiangsu Higher Education Institutions.

## References

[1] G.A. Zank, B. Rauchfuss, S.R. Wilson. J. Am. Chem. Soc., 106, 7621 (1984).
[2] M.L. Fu, G.C. Guo, L.Z. Cai, Z.J. Zhang, J.S. Huang. Inorg. Chem., 44, 184 (2005).
[3] T.K. Bera, J.I. Jang, J.H. Song, C.D. Malliakas, A.J. Freeman, J.B. Ketterson, M.G. Kanatzidis. J. Am. Chem. Soc., 132, 3484 (2010).
[4] M.G. Kanatzidis, J.-H. Chou. J. Solid State Chem., 127, 186 (1996).
[5] M. Wachhold, M.G. Kanatzidis. Inorg. Chem., 38, 3863 (1999).
[6] W.S. Sheldrick, M. Wachhold. Coord. Chem. Rev., 176, 211 (1998).
[7] J. Li, Z. Chen, R.J. Wang, D.M. Proserpio. Coord. Chem. Rev., 190-192, 707 (1999).
[8] W.S. Sheldrick. J. Chem. Soc., Dalton Trans., 3041 (2000).
[9] A. Kromm, T.V. Almsick, W.S. Sheldrick. Z. Naturforsch., 65b, 918 (2010).
[10] G. Cordier, C. Schwidetzky, H. Schäfer. Rev. Chim. Minér., 20, 877 (1983).
[11] G. Cordier, C. Schwidetzky, H. Schäfer. Rev. Chim. Minér., 22, 93 (1985).
[12] D.M. Smith, C.-W. Park, J.A. Ibers. Inorg. Chem., 35, 6682 (1996).
[13] W.S. Sheldrick, J. Kaub. Z. Naturforsch., 40b, 19 (1985).
[14] W.S. Sheldrick, J. Kaub. Z. Naturforsch., 40b, 1020 (1985).
[15] V. Vater, W.S. Sheldrick. Z. Naturforsch., 52b, 1119 (1997).
[16] V. Vater, W.S. Sheldrick. Z. Naturforsch., 53b, 1259 (1998).
[17] W.S. Sheldrick, J. Kaub. Z. Naturforsch., 40b, 1130 (1985).
[18] W.S. Sheldrick, J. Kaub. Z. Naturforsch., 40b, 571 (1985).
[19] H.O. Stephan, M.G. Kanatzidis. J. Am. Chem. Soc., 118, 12226 (1996).
[20] D.X. Jia, Q.X. Zhao, L.F. Song, Y. Zhang, J. Dai. Chinese J. Struct. Chem., 25, 1110 (2006).
[21] D.X. Jia, Q.X. Zhao, J. Dai, Y. Zhang, Q.Y. Zhu. Z. Anorg. Allg. Chem., 632, 349 (2006).
[22] M.L. Fu, G.C. Guo, X. Liu, B. Liu, L.Z. Cai, J.S. Huang. Inorg. Chem. Commun., 8, 18 (2005).
[23] J. Zhao, J.J. Liang, Y.L. Pan, Y. Zhang, D.X. Jia. Monatsh. Chem., 142, 1203 (2011).
[24] A. Kromm, W.S. Sheldrick. Z. Anorg. Allg. Chem., 634, 225 (2008).
[25] A. Kromm, W.S. Sheldrick. Z. Anorg. Allg. Chem., 634, 121 (2008).
[26] A. Kromm, W.S. Sheldrick. Z. Anorg. Allg. Chem., 634, 2948 (2008).
[27] A. Kromm, W.S. Sheldrick. Z. Anorg. Allg. Chem., 635, 205 (2009).
[28] M.L. Fu, G.C. Guo, X. Liu, W.T. Chen, B. Liu, J.S. Huang. Inorg. Chem., 45, 5793 (2006).
[29] Y.L. Pan, Q.Y. Jin, J.F. Chen, Y. Zhang, D.X. Jia. Inorg. Chem., 48, 5412 (2009).
[30] X. Wang, T.L. Sheng, S.M. Hu, R.B. Fu, J.S. Chen, X.T. Wu. J. Solid State Chem., 182, 913 (2009).
[31] G.N. Liu, G.C. Guo, F. Chen, S.H. Wang, J. Sun, J.S. Huang. Inorg. Chem., 51, 472 (2012).
[32] G.N. Liu, X.J. Jiang, M.F. Wu, D.E. Wang, G.C. Guo, J.S. Huang. Inorg. Chem., 50, 5740 (2011).
[33] H. Jiang, X. Wang, T.L. Sheng, S.M. Hu, R.B. Fu, X.T. Wu. Inorg. Chem. Commun., 17, 5 (2012).
[34] J. Zhao, J.J. Liang, J.F. Chen, Y.L. Pan, Y. Zhang, D.X. Jia. Inorg. Chem., 50, 2288 (2011).
[35] D.X. Jia, J. Zhao, Y.L. Pan, W.W. Tang, B. Wu, Y. Zhang. Inorg. Chem., 50, 7195 (2011).
[36] W.W. Wendlandt, H.G. Hecht. Reflectance Spectroscopy, Interscience Publishers, New York (1966).
[37] G.M. Sheldrick. SHELXS-97, Program for Structure Solution, Universität of Göttingen, Germany (1997).
[38] G.M. Sheldrick. SHELXL-97, Program for Structure Refinement, Universität of Göttingen, Germany (1997).
[39] J.H. Bi, L.T. Kong, Z.X. Huang, J.H. Liu. Inorg. Chem., 47, 4564 (2008).
[40] Y.J. Qi, Y.H. Wang, C.W. Hu, M.H. Cao, L. Mao, E.B. Wang. Inorg. Chem., 42, 8519 (2003).
[41] T. van Almsick, W.S. Sheldrick. Z. Anorg. Allg. Chem., 632, 1409 (2006).
[42] T. Fujiwara, E. Iwamoto, Y. Yamamoto. Inorg. Chem., 23, 115 (1984).
[43] F. Gándara, C. Fortes-Revilla, N. Snejko, E. Gutiérrez-Puebla, M. Iglesias, M.A. Monge. Inorg. Chem., 45, 9680 (2006).
[44] K. Wendel, U. Mŭller. Z. Anorg. Allg. Chem., 621, 979 (1995).
[45] C.H.E. Belin, M.M. Charbonnel. Inorg. Chem., 21, 2504 (1982).
[46] M.A. Ansari, J.A. Ibers, S.C. O'Neal, W.T. Pennington, J.W. Kolis. Polyhedron, 11, 1877 (1992).
[47] W. Czado, U. Mŭller. Z. Anorg. Allg. Chem., 624, 239 (1998).
[48] D.M. Smith, M.A. Pell, J.A. Ibers. Inorg. Chem., 37, 2340 (1998).
[49] T. van Almsick, W.S. Sheldrick. Acta Crystallogr., E62, 141 (2006).


[^0]:    *Corresponding author. Email: jiadingxian@suda.edu.cn

[^1]:    Symmetry transformations used to generate equivalent atoms: For 3: $(\# 1)-x+1,-y,-z+1 ;(\# 2)-x+2,-y+1,-z+2$.
    For 4: $(\# 1)-x+1,-y+1,-z ;(\# 2)-x,-y+1,-z+1$.

